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We discuss a simple rephase-invariant parametrization of the 

Kobayashi-Maskawa mixing matrix V which easily generalizes to 

more than three generations and which we believe to be suitable 

as a phenomenological standard. Our independent parameters 

are the magnitudes [Viol with i < Q and the phases of plaquettes, 

arg( Via Vjp V’ip V’jo ). where j = i+l, P = a+l, and j c 6. The 

detailed discussion includes consequences of unitarity 

constraints, modifications in cases of degenerate quark masses, 

and the relation to Jarlskog’s invariant functions of mass matrices. 

We re-express the CP-violation phenomenology of the K- K and 

B- B systems in this rephase-invariant formalism. We exhibit a 

4th generation scenario where the top-quark mass need not be 

large even in the presence of large B,- Bd mixing. 

l Operated by Universities Research Association Inc. under contract with the United 

States Department of Energy 
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I. Introduction 

In the standard model, CP violation is believed to be a consequence of 

complex values of elements of the 3x3 Kobayashi-Maskawa matrix’ V which 

describe the couplings of the weak intermediate bosons &to quarks. However, the 

phases of individual matrix elements of V are not themselves directly observable, 

because of arbitrariness in choice of phases of the quark fields. Therefore there is 

strong motivation to find a descriptive structure which is independent of such choices 

of phase. This problem has received a great deal of attention, and the 3x3 case is 

well-understood.2 We are motivated to address this issue again mainly by curiosity 

on how the 3-generation description generalizes to n generations.3 Here the situation 

is much less clear. 

The description we offer does work in the n x n case, is reasonably simple 

and straightforward, and uses as raw material the quantities directly emergent from 

phenomenology. We believe it to be an especially suitable candidate for 

standardization of the phenomenology. 

Our main suggestion is to replace the usual description of the 

Kobayashi-Maskawa matrix in terms of generalized Euler angles4 by a description 

using moduli of matrix elements and plaquette phases, defined below. The name 

“plaquette” is motivated by a rough analogy to gauge theories; the rephasing 

transformations play a role analogous to gauge transformations. As the definition 

suggests, the plaquette phases are then analogous to the field-strengths of gauge 

theories. 

In the next section, we present the general description. In Section Ill we 

present details of the argument. In Section IV we discuss the cases of 3 and 4 

generations. A graphical method used to describe unitarity constraints is discussed in 

Section V. Section VI touches on Jarlskog invariants. and parameterizations of mass 

degenerate cases are presented in Sect. VII. Rephasing-invariant phenomenology 
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occupy Sect. VIII. Sect. IX concludes. 

II. Jhe General Prescription 

We label the n x n Kobayashi-Maskawa matrix Via with Latin indices for 

Q&?/3 quarks (i=u,c,t,...) and Greek indices for the Q=-l/3 quarks (a=d,s,b,...). The 

number of independent real parameters characterizing the (unitary) V is n2. Of 

these, n(n-1)/2 are “angle” parameters (this being the number of independent 

parameters for n x n real rotations). Of the 2n possible rephasings of the quark fields, 

one (a common phase change of all 2n quark fields) leaves V invariant. Hence the 

number of independent “phase” variables is 

n2 - 
n(n-1) (n-l) (n-2) 

- (2n -1) = (1) 
2 2 

A typical observable (in particular anything obtainable from 

Feynman-diagram calculations) will be a polynomial in V’s and v”s, with the 

restriction that in each term of the polynomial there be equal numbers of V’s and 

Y’s, and that in each term the set of indices { i } in the product of V’s be identical to 

the set ( i } in the V”s (This must of course also be true for the Greek indices { a). ). 

The simplest observable is the magnitude of each K-M element, 

(ViaV’ia)“2. The simplest which contains phase information is a product of four 

V’S: Via Vjp V*iP V*ja For the case (i - jj = ja-Pj =l , we call this product a plaquette. 

The plaquettes. together with the jViaj2, will be our basic building blocks. We define 

“ia = Vicc Vi-l,a-l V*i,a-l Y-1 ,a (2) 

We furthermore define plaques as 

jPIIiu = Via Vjp V*iP V’ja (3) 

As we demonstrate later, any observable consisting of a product of V’s and 
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V”s can be written as a product of plaquettes, possibly multiplied by a product of 

IViol, and possibly divided by another product of IVial. (We assume, here and in 

what follows except Section. VII, that all elements of the K-M matrix are 

nonvanishing). It is therefore natural to associate the magnitudes of the /Viol with 

“angle” variables and the phases of the plaquettes (often just the imaginary part 

suffices) with the “phase” variables. In particular if we choose the IViol with cx > i as 

“angle” variables and also the arg I& with a > i as the “phase” variables, the 

counting comes out correctly: there are n(n-1)/2 independent IViol and (n-l) (n-2)/2 

arg ni, (The topmost row with i = 1 is unavailable, and one has 

n(n -1) /2 - (n -1) = (n -l)(n -2) 12 elements remaining.). 

This is our main proposition: use the j&oj2 and arg IIfo with a > i as ti 

indeoendent set of reDhase-invariant variables. We will show later that, given these 

parameters, the entire K-M matrix is determined up to the (2n-1) arbitrary 

quark-field phases, and up to a finite ambiguity which is no greater than 2n-2-fold, 

coming from solving quadratic equations in determining the magnitude of unknown 

diagonal v’s In the 3x3 case, this implies that jVusj2, jVubj2, IVcbj2, and arg &.b 

are the principal parameters. In the standard K-M parameterization, it is the imaginary 

part of the plaquette:5 

J = lm ncb = lm Vcb Vu, V’c, V’ub = s12 ss ss cl cz ca sin6 

which is the familiar and ubiquitous combination present in CP-violation 

phenomena. We note that 

(4) 

Im ncb < 1 ncbl < (.05)x(0.2)x1 x(.01) - 1 o4 (5) 
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We also note the important result that in the 3x3 case,5 all plaques have the 

same imaginary part. In fact, for all i + j; CL # p 

lm Via Vjp v’ib V’ja = constant = +J (6) 

This is a consequence of unitarity of the K-M matrix, and is discussed further in Section 

IV. 

In the 4x4 case, the parameters are supplemented, in an obvious notation, 

by 5 new quantities, namely jVuSj2, jVcSj2, jVtSj2, arg TICS, and arg IItS. Thus, 

were new generations to emerge, the phenomenological structure need not undergo 

any major revision. New parameters become introduced and old unitarity 

constraints are modified. However the moduli and plaques associated below and on 

the diagonal, will be complicated function8 of the above parameters.’ 

Ill. j&t& 

In order to substantiate the assertions of the previous section, it is necessary 

to first show that any (rephase-invariant) observable can be expressed in terms of IVial 

and phases of plaquettes. Secondly, we have to show that given only the /Viaj2 and 

arg l-Ii, with a > i all remaining parameters of the K-M matrix are determined. 

To demonstrate these assertions, it is useful to depict the observables, 

plaquettes, etc. which are products of V’s and V*‘s graphically.8 The procedure is 

as follows: 

i) If Via appears in the product, place an ” o ” in the ia entry of an originally 
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empty n x n matrix. If V’ia appears, place an ” X ‘I. 

ii) Then, from re-phase invariance, each row (or column) must have equal 

numbers of ” x ” and ” o ‘I. 

iii) An ” 61” in a single given icL location is a factor IVia12. These can be 

inserted or removed at will without changing the phase of the expression. 

Now, given an arbitrary product Via . V’i6, which corresponds to a matrix 

with ” x ” and ” o ” entries, we may systematically eliminate the x’s and the o’s from 

the 1 st column in terms of plaquettes, and then continue the procedure column by 

column. For example9 

. . . . . . . . 
x l 0 l x l 0 l 

w w i 1 i 1 = arg = arg 
. . x 0 . . x 0 

0 . l x 0 . l x 

. . . . 

. . . . 
= - arg IIS2- arg rJ3 + arg 

1 I 

= 
x . . 0 

0. .x 

=...etc...= - arg n32- arg l-I,, - arg %- arg n43- arg Q4 

. . . . 
x630 l 

1 1 =-arg 
@8X 0 

0 . . x 

=32+ arg 

. . . . 
l x 0 l 

I 1 x 0 x 0 

0 l l x 

= 

(7) 

We trust the procedure is clear enough not to require the formal proof here. Therefore 

we argue it is possible to express all observables in terms of the magnitudes of K-M 

matrix-elements and the phases of plaquettes. What remains to be shown is that the 
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limited set ( IVia), arg “ia) with a > i suffices as well. We do this in several steps, by 

construction: 

1) First choose the phases of Vfa and Vin. Since there are 2n-1 such 

elements, this exhausts the arbitrariness associated with rephasing of quark fields. (We 

shall return later to a suggestion for how this phase choice might most conveniently 

be made). 

2) Use unitarity to determine IV1 1) and IV,,) 

IV,,12 = 1 - x lV,a12 
CD1 

)Vnn12 = 1 - C JVin12 

icn 

( aa ) 

( 8b ) 

3) At this point all elements in the top row and right-hand column are fully 

determined. Thus the phase of V2,n-l can be determined from the phase of the 

plaquette, l12n in the upper-right hand corner of the matrix * * * * * r--l . . . . * . . . . * . . . . * . . . . * 
(9) 

4) In the same way, the phases of the remaining V2o in the second row 

with a 2 2 may be determined iteratively in terms of plaquette phases e.g. 
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Via with IX 2 i: 

* * * * * * * * * * 
In IIII . . * * * . . * * * 
I... l * . . . . * 
I . . . . * . . . . * 

(‘0) 

(1’) 

Note that the phase of V22 is determined at this stage, but not its magnitude. 

5) The same procedure may be followed to determine the phases of all 

* * * * * 

. * * * * 

. . * * * 

. . . * * 

. . . . * 

although it must again be remembered that [Vii1 is not determined for 1 < i < n. 

6) We now use unitarity to obtain the missing parameters in the 2nd 

row. Orthogonality of the first and second rows gives a linear relation between the 

(complex) V21, the real IV221 and previously determined quantities 

n 

V21 V’l 1 + V22 V’l2 + c V2aV’la=0 (12) 

a=3 

Now we may introduce the unitarity-constraint of normalization of the second row: 

n 

IV2112 + IV2212 = 1 - x Ikk12 (13) 
a=3 1. 
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This is a quadratic equation in the unknown (V221. If the off-diagonal elements of the 

KM matrix are small (as in the case here), one root is positive (the physically correct 

solution). The other root will be negative, near -1, and thus physically 

unacceptab1e.l o 

7) This procedure can be again iterated. In the third row there are two 

orthogonality equations which determine the (complex) V31 and V32 as linear 

functions of IV33l with coefficients determined in terms of known quantities( up to the 

remote possibility of a twofold ambiguity in determining IV221 ). Normalization of the 

third row leads to a quadratic equation for IV331 with a remotely possible twofold 

ambiguity in its solution. 

8) When we reach the nth row, the same procedure again may be used 

to determine IV,,I. However IV,,I was already determined in step 2 without 

ambiguity. Thus no additional ambiguity is introduced at this stage, and it can be 

expected that the overall degree of ambiguity will, if present at all, be reduced. A 

highly conservative statement is that there is at most a 2n‘2-fold ambiguity in 

reconstructing the K-M matrix from the input data. However, as long as the 

off-diagonal elements are as small as those seen experimentally, there will in fact be 

no ambiguity at all. 

This completes the general argument on reconstruction of all K-M 

parameters from the input parameters. In the next section we will explicitly show 

how the procedure works for the 3 and 4 generation cases. 

IV. Parameten7a 

A. Three Generatipns 
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The magnitudes of the K-M elements which serve for us as inputs are:l ’ 

/vu,/ = 0.220 * ,002 (lea) 

Iv&l 2 0.0’ 1 (90% CL) (‘4b) 

Iv&l = 0.048 + .o’ 0 (14c) 

We suggest that for reconstruction purposes the 5 independent 

phase choices be made as follows: 

(1) Vud, Vu,, Vcb, and Vtb are chosen real and positive, 

(2) The phase of V’ub is chosen equal to the phase of the (only) input 

plaquette ncb. 

arg v”& = arg ncb. (15) 

This implies that V,, is also real and positive. Then we may 

proceed to reconstruct the remaining V’s. 

0. Four Generations 

In the case for four generations, we proceed in a similar way. Again it will 

be convenient to choose phases such that the phases of plaquettes of interest are 

directly related to phases of the K-M matrix elements in the upper right-hand corner; 

i.e. Vub, V,B, and V,.. We shall choose those such that their neighbors are real 
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and positive. Specifically, the proposed generalization of the preceding section is as 

follows: 

(1) Choose Vud, Vu,, VtS, and VTS real and positive. 

(2) As before, choose the phase of V’ub equal to the phase of the 

plaquette ncb: 

arg vub = -arg ncb (16) 

(3) In the same way choose the phase of V’,S equal to the phase of the 

plaquette lTtS: 

arg vcB = -aQ “1~ (17) 

(4) Finally choose the phase of V,S so that Vcb remains real and positive. 

This is accomplished by the choice: 

arg ‘LIB = arg VUb + arg v& - arg ‘T,.. 

= -arg ncb - arg qB - arg ncB (‘8) 

(5) From these definitions, it follows that, as in the 3x3 case, V,,, Vcb, and 

Vtb remain real and positive. The situation is shown schematically as 
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I 

RR * * 

l (R) (R) * 

v = (19) 

. 
l (W R 

. . . R 

where R denotes real-and-positive by definition, l denotes complex, 

and (R) denotes real-and-positive as a consequence of the phase 

choices made for the starred elements. 

It is clear there is a useful generalization here: for the 2n-1 phase 

choices, take the Vii and Vi+1 ,i to be real and positive. This puts the 

number of remaining phases for elements above the diagonal equal 

to the number of independent plaquette phases. The analysis of 

Section Ill remains valid with this convention. Indeed, we believe that 

if one insists on a standard phase convention, this one might be 

useful for phenomenology, since its connection to the 

rephase-invariant plaquettes is manifest. 

V. Modificationsto the Relation J=+ jm n in FourQnerations 

We show some simple diagrammatics based on unitarity to prove the well 

known result Im II =+ J (eq.6) in the three generation case;5 and then extend the 

diagrammatics to any number of generations. Define Im TICS= J, then unitarity of KM 

matrix gives : 
l 

One can write equivalently 

I 

0 l l 

x l l 

. . . 

j,; T]+[ ;;;]=o(21) 
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Multiplying by Vt2* V22 we obtain 

1 0 x l 

I x 0 l 

. . . 1 i 
l @ l 

+ l 8 l 

. . . 

Taking the imaginary part removes the second term and we get 

Im lI22 = Im l-I23 = J. ( 23 ) 

In this fashion one easily sees that in three generations only one CP-sensitive 

parameter exists; Im II = f J. 

The generalization to 4x4 matrices or higher creates a very large number of 

such relations. It is interesting to see how far one can go with these. Already for 

four generations, the large number of linear unitanty constraints which one can write 

down contain many which are linearly dependent. After detailed examination, it 

turns out that the nine Im “ia for plaquettes can be expressed linearly in terms of 

nine other quantities which are the imaginary parts of ~&&Qu@,. By a big-plaque 

we mean a quantity 

big-plaque = Via Vjp v’i3 V’jo ( 24 ) 

I + l x 0 

with/i-jl>2andja-$j ~2 

There are four 2x2 big-plaques, four 3x2 big-plaques and one 3x3 

big-plaque. This re-expression of plaquettes can be useful because, under the 

assumption that IVj decreases the farther it is from the diagonal, one relates phases 

of plaquettes on the diagonal to phases of elements, the moduli of which are small. 

Note that there is only one big-plaque which can reside in the 3 generation submatrix. 
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By repeated use of the unitarity condition,12 

Im I II,= Im { 

0 . x l 

. . . . 

x . 0 l 

L* . . . 

0 l l x 

. . . . 

+ 

x l l 0 

. . . . 

Im I$s= Im I& + Im 1 

ImII,,= ImI& + Im{ 

1 . 0 l x 

. . . . 

. x l 0 

. . . . 

. . . . 

0 l x l 

. . . . 

.x l 0 l 

Im II,,= Im I& + Im I&- Im I&+ Im { 

0 l l x 

. . . . 

t 
I 

. . . . 

-x . l o- 

I 

0 l x l 

. . . . 

. . . . 

x l 0 l 

. 0. x 

. . . . 

. . . . 

. x l 0 

. . . . 

0 l l x 

. . . . 

x l l 0 

. . . . 

l 0 l x 

. . . . 

l x l 0. 

I ( 25 ) 

In the limit of a trivial fourth-generation contribution (i.e no off-diagonal 

elements of Vi4 or V4a, this reduces immediately to the 3-generation case. To make 

good use of these relations, however, appears to require some knowledge of the 

fourth-generation K-M matrix elements. One can say that sufficient conditions for the 

3-generation relations to survive are that IV,Bl, lV,Bi, IVTdi, and lVTsl all be small 

compared to 10S2. 
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VI. J rl k a s oa invariants 

Jarlskog, in an interesting paper,13 pointed out that all physical quantities 

must be independent of an arbitrary unitary transformation affecting simultaneously the 

up and down quark mass matrices, denoted respectively m and m’. One diagonalizes 

the “square” of the mass-matrices via:13,14 

U (m m+) U+ = D2 ( 26a ) 
U’ (m’ m’+) U+=D’2 ( 26b 1 

where U and U’ are unitary matrices. The KM matrix is defined as: 

v = uu+ ( 27 ) 
There are n2+1 physical measurables, 2n- quark masses and (n-1)2 physical 

parameters of the mixing matrix. Jarlskog pointed out that physics does not change 

under the transformation 

mm+-+ Xmm+X+ ( 28a 1 

m’m’+ + X m’m’+ X+ ( 28b ) 

where X is an arbitrary unitary matrix. Under such a transformation, eq.28, the 

mass-eigenvalues of the up and down quarks and even the mixing matrix 

v-tv ( 29 ) 

stay invariant. As is well known not all the mixing matrix elements are physical 

quantities. The transformation discussed in previous Sections which leaves physics 

invariant, but changes the phases of KM elements is: 

U+TU ( 3Oa ) 

U’ + B+ U’ ( 3% ) 

where T, B are arbitrary diagonal unitary matrices 

V-+TVB. (31 1 

It appears that Jarlskog’s approach includes all the physics, since ones can 
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not only express any IV\ 

1 Via I2 = tr { vi(S) v’,(S) ) / ( det v det V’ ) ( 32a ) 

but also any plaque as an invariant function of mass matrices, eq.28. In particular 

kbni, = via vkp vip’ vka 

l 

= via vka’ vkp vip’ = via v+& vkp vfPi = 

= tr { Et V E, V+ Ek V E6 V+ } = tr { vi(S) v’,(S) v&S) v’p(s’) } / ( det v det V’ )* ( 32b ) 

here S=m m+, S’=m’ m’+; Ei and E, are the elementary matrices; vi(S) and v’,(S) 

are the Vandermonde-type matrices for the up and down sectors respectively (consult 

ref.1 3 for detailst5). 

It appears that invariance under eq.28 can be likened to redefinition of fields 

and not to an underlying internal symmetry. A lucid example is the case of multiple 

scalar fields & ( I$’ ,..., I$” ) with a e4 interaction. The lagrangian density reads: 

L=1/2(Xo+aPe- o+m2e+~(e+o)2} ( 33 ) 

The mass matrix can be diagonalized by a unitary transformation U, i.e. 

U+m2U=D2 ( 34 ) 
Then under the redefinition of fields 

@+U 0 ( 35 ) 
we will have a diagonalized lagrangian. Obtaining the “same physics” does not 

require identical actions S= Id4x L, but rather “same physics” falls into equivalence 

classes, definable by all lagrangians having identical m2 eigenvalues ( not necessarily 

equal m2 matrices ). 
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VII. Deaenerate 

A. Mass deaenm 

It is interesting to consider cases of d-fold degeneracies’ 6 in the up or down 

quark masses. The parameter counting goes as follows: One begins with n(n-1)/2 

angle and (n-l)(n-2)/2 phase parameters. For each distinguishable d-fold 

degeneracy one subtracts by d(d-1)/2 both the angle and phase parameters. If a 

negative count of parameters results one takes 0 instead. 

For instance, as is well known, in the three generation case existence of one 

two-fold degeneracy implies nonexistence of a CP-violating phase. For 4 generations 

and two 2-fold degeneracies, there remain 4 angle parameters and 1 phase, and not 5 

angles and 0 phases. 

Consider a d-fold mass degeneracy, and for concreteness take the first d 

up-quarks to be degenerate. Under ad X d unitary reshuffling U of the first d-rows of 

the KM matrix physics can not change. 

u 0 
v + V 

0 a 

( 36 ) 

Call the KM matrix restricted to the first d-rows v. We observe that v+ V is invariant 

under U-transformations eq.36 ( Trivial for V+V.). The invariants under eq.36 are 
d d 

( V+ V )@=C V’ia VIP= C V’ioVip ( 37 ) 
is 1 Cl 

The summation extends only over the degenerate mass rows. Physically 

invariant quantities are obtained when we create rephasing invariant combinations in 

the down sector of V+V, eq.37. For instance: 
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4 i V’ioVio 
i-1 

b) $, V*io Vip (V’jp Vja ) = $:‘llj, 

C) / Vja 1 1 ia, 
k!3 

for j >d 

( 38a ) 

( 3% ) 

for j,k>d ( 3% 1 

It seems possible to relate any other physical quantity in terms of a)-c). For instance: 
d d d d 

C V*io Vip E,V*ip Vja = x KY-I@ = ( c %-I@ h$ ) / @r& for k, r > d 
b 1 i.j-1 i&l 

( 39 ) 

or: 

d d 

x v*ia vip v'jp Vka v’ky vjy = 

i-1 

for k, j > d 

( 40 1 

As a physical parameterization we could choose the angle and phase parameters from 

the region bounded above by the dth row and bounded to the right by the diagonal; 

(the dth row and the diagonal are not included). 

iI 
\. . . .’ 

d . \ . . . 

. . \ . . (41) 

The angle parameters, denoted by 0, are taken as the magnitudes of KM 

elements in the above region. The phase parameters are taken as the arguments of all 

those plaquettes that involve at least three KM elements from the above region. 
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Indeed any plaque with two elements from the first d rows can always be rotated to 0, it 

has no physical significance. By a unitary transformation on the first d rows, eq.36, one 

can rotate all the first d rows below the diagonal simultaneously to 0. Therefore no 

angle or phase content is neglected in the parametrization, eq.41. 

It is straightforward to analyze multiple different degeneracies. For example 

look at a 4-generation model where mu=mc and md=ms. Then just choosej V33 j, 

IV34L I V43 II I V44 I and arg $4 as our parameters. Indeed the submatrix 

[ 

v33 v34 

v43 v44 1 
is not necessarily unitary and contains phase content. 

( 42 ) 

B. Different 

Inspired by E6 models” we consider the following. If we were to have an 

unequal number (n) of “up generations” and (m) of “down generations”, then the mixing 

matrix could satisfy only one of the two equations: 

a. V V+= 4 nxn ( 433 ) 

b. V+V= lmxm ( 43b 1 

Both unitarity conditions cannot be met simultaneously since the combined number of 

constraints n2 + m2 exceeds the initial number of real parameters 2nm characterizing 

an arbitrary complex n X m V-matrix. (in the square case (n=m): a t) b). To be 

definite take n < m; then the number of physical angle parameters is 

n [ (m-l)+(m-n) ] /2 ( 44 ) 
and phase parameters is 

[ (n-2 )(m-l)+n(m-n) ] /2 ( 44b ) 
we assume a nondegenerate up-mass and down-mass spectrum. A physical 

parameterization can proceed as follows: take the region bounded to the left by the 
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diagonal , which is not included. 

( 45 1 

” 

m 

The angle parameters are the magnitudes of the KM elements in the bounded region, 

the phases are the arguments of the plaques constructed in that same region. 

It is amusing that had we an m X m mixing matrix with n distinguishable up-quark 

masses [ a (m-n+l)-degeneracy]; then the surplus of angles and phases in the above 

mentioned n X m case differs by (m-n). 

VIII. &phase-Invariant Phenomenology 

Here we display in rephasing invariant form15 the kaon parameters Am, iiT, 

E, E’ and look at the KM constraints from KL+ p+ p- and from B”- go and DO- Do 

mixings. In a later study we will include constraints coming from K+ + nE+v v and from 

the electric dipole moment of the neutron. 

A. Kaon svstem 

We define the short and long lived species, assuming CPT-invariance, as: 

]Ks>=pIKo>+qI K”> ( 46a ) 

(KL>=pIKo>-q] K”> ( 46b ) 

The parameters p and q are not rephase-invariant. In the absence of CP violation the 

ratio p/q is of modulus unity. Define 
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&lo = 
crcn,I=OIH’jK”> 

< n x , I =0 I H’ I K” > 
( 47 ) 

The Wu-Yang phase convention, together with CP I K” > = + 1 ROB, implies o,=O. Here 

we leave this phase, eq. 47, arbitrary. From their definitions it is clear that the following 

combinations are rephase-invariant 

eiooM,z = eiwo C, P 
<KOIH’In> <nlH’I K”> 

( 4th ) 
n mKSEn 

ek”,r,,=ek”o 2n: Cpn<KoIH’In> <nIli’\ K”>6(mK-En) (48b) 
n 

e-iwo4,e-i (o,+arg r,.J M*l* 1 I-*12 - (i/2) 

I 

l/2 2{ M*,s- (i/2) r*,s} 

= 
e -i w. 

P M,,/ r,z -(i/2) -Ah 

where P stands for principal value and pn is the density of states. It is useful to 

recognize that M,, / r,z is rephase-invariant and real in the limit of CP conservation. 

We now may express the (rephase-invariant) mass and lifetime difference of the kaons 

aslg 

Am = -2 Re (M,, eiwo ) ( 5Oa ) 

Ar = -2 Re ( r,s ei% ) ( 5Ob ) 

Rephase-invariant definitions of the CP-violating parameters are 

< n x , I =0 1 H’ I K, > 
&= (5la) 
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and E’ = (l/42) i e @+o) Im (asfao) 

Here we have defined 

< x K , I 1 H’ 1 K” > = a, ei 6 

It follows that: 

-ilm(M,2eiWo)-Im(r,,eiUo)/2 
&= zz 

A?L 

(5lb ) 

( 52 ) 

Here Ak hL-hS = Am -i AI72 are the eigenvalues of the 2 X 2 mass matrix M-ir/2. 

Eqs. 50-51 are all physical quantities and shown in a rephasing invariant way; under 

the rephasings 

1 K” > + eie 1 K” > ( 53a 1 

1 Ko> +ei sl Ko> ( 53b 1 

physics does not change. 

We remark that in the standard model the I=2 amplitude arises only20 from 

the spectator diagram and hence2t 

a2= b vus* vud, ( 543 1 

b being a real constant. On the other hand 
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a0= E 
q-u,c,t,... cq vqs’ Vqd ( 54b ) 

where cq are coefficients whose short distance contributions have been calculated.22 

We therefore obtain 

1 1 
- 

&‘= 42 
i e i@2-s~ 1 a2/% )* 

1 vus vud I2 
(-) Im $~“,Ct,,.@q’b) qd%s ( 55 ) 

Utilizing unitarity and assuming (cdb) to be real we obtain in the four generation case 

1 1 

&‘= 42 
- i e i@*-6o) 1 a2/ao I* 

I vu, vud I2 b 
1 -(q-c,) Im k+ 

One sees that C/E can be positive, negative, or even 0 and that C/E does not depend on 

the long-distance cu coefficient, which might harbor the Al=1/2 rule explanation. 

To calculate E, one realizes that to a good approximation one can neglect the 

phase difference between a0 and a2. Then, exploiting the simple relation20 ( eq.54a), 

we obtain23 

M,2 ei w. - E Udnis Udnks s(- - ( 57 ) 
ilk-u,cJ ,... 

In the simple limit Xi -Z-C xk CC 1, [ Xi= (mil Mw)2 ] we have 

S( Xi, xk ) = Xi h( Xl&) 

s( x,)= s( xk, Xk ) = xk 

For arbitrary quark masses exact expressions could be used.24 E follows as23 

( 5th ) 

( 58b ) 
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-I 
E” c i k ucl,,, St Xi, Xk ) Im { Udnis Ud&s 1 

Ah ~vusvud~2 ’ =s~s ( 59 ) 

The KL-KS mass difference is believed to arise mainly from long distance 

effects K” t) 2x: t) K”. However, Gaillard and Lee25 predicted the charm mass 

within the two generation GIM model. 

Amlexp _ m,s Re (udIIcs )2 = mC2 O4 ( 60 1 

As a rough upper bound, we note that higher generation contributions must not exceed 

Am and so must not exceed the charm contribution. 

While the E’ parameter involves the imaginary parts of the qdIIus 

plaques(eq.55); the short distance contributians26 of KL+ u+ f~- contains information 

about their real parts. An estimate of the modulus of the short distance amplitude 

leads to: 

I Re { cq -” Ct ,,, qdn”s mq* } I I I V,,Z V,, I 55 Gev2 (61 ) 1 II 

Utilizing unitarity we may eliminate any one plaque; this yields for the four generation 
case: 

] mC*Re{ ?ITus )+ mt*Re{ rdIIus } +m?Re{ TdTIus } ( 

II VU,2 V, 1 55 Gev2 ( 62 1. 

B. B- B mixing 

The large Bd-mixing observed by the ARGUS collaboration27 

(AI-Il/~)d = 0.7 ( 03 1 
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implies, in the case of three generations,28 

mt&60 Gev. 

We review the reasoning as follows. To good approximation26-31 

( 64 ) 

(Am&j = 3 Bd ( ,;rMev) 2 
S(y) “td 

2 

S( mt = 40 Gev) “cb 
( 65 ) 

where Bd is the “bag-constant” and fB, is the decay constant. From unitarity of the KM 

matrix and the experimental data one obtains that 

1 “td / “,b I= e ( 66 1 

The easiest way to reconcile the experimental Bd-mixing result, eq.63, is to choose a 

larger top quark mass. This may not be obligatory given theoretical and experimental 

uncertainties. However in the four generation case, unitarity conditions are much 

relaxed. We know’ 1 from the B lifetime that 

I”,bb=e2 ( 67 ) 

and from indirect unitarity bounds 

1 “td 1 5 0.17 (95% CL ), 0 5 1 “tb 1 < 1. ( 68 1 

Assume, for the sake of an argument, that the top contribution is dominant 

even in the four generation scenario. Then one can easily fit the large Bd-mixing with 

small top quark masses (say 40 Gev ), by choosing I Vtd 1 - I vcb I -e2. 

Furthermore, were it to happen that B,- & mixing is less than maximal, one 

would then have to look outside the standard 3 generation model.30 One possible 

explanation could be found with 4 generations.32 
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C. Remarks & Soeculations 

broe 4th Generation mixina: An Example 

consider 

To get a feel about the mixing magnitudes of a fourth generation 

1 8 93 92 

0 1 e* 9 
I “big I - 83 82 i 8 

_ e*e e 1 

We list a few consequences: 

(4 mrS30 Gev (KL-KS mass difference) 

03 m,g 34 Gev FL-, P+P-, 

Cc) me6100 Gev (Do- DO mixing) 

(4 rnr* 170 Gev ( Bd- &J mixing) 

(69 1 

( 7Oa ) 

( 7Ob ) 

( 7Oc ) 

( 7Od ) 

Remarks: 

(4 In order that higher generation contributions not exceed the charm 

contribution to the KL-KS mass difference, one must have 

m,s t14 2 mrs e8 (71) 

leading to mrS 30 Gev. 

(b) The KL-+ p’ p- analysis (eq. 62 ) leads to eq. 70b. 
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(4 In the two generation case33 

A% f!J 2 mD 

=T (-I ( 
32 

Am, “k m, 

With the experimental D-lifetime and ms= 500 Mev one gets 

(Am& =lOB 

Existence of an ultra heavy 4th generation B-quark leads to 

AmD- [ e2 ms2 + me2 ( V,, V*,, )2 ] 

(Am/$o- 1 OS3 [ 1+ e4 (m,/ mJ2 ] 

( 72 ) 

( 73 ) 

( 74 ) 

( 75 ) 

From experiment34 (Am/y)D +zJO-’ hence eq. 70~. 

04 From Bd- Bd mixing, eq.63, and analOgOuS reasoning to (c) we obtain35 eq. 

70d. 

It appears that Vbis, eq.69, is experimentally marginal. 

IX. Conclu&o6 

The main purpose of this note is the proposed parametrization of 

the KM matrix. It is quite directly related to phenomenology, since the 

parameters consist of moduli of matrix elements and plaquette phases 

(defined in eq. 2 ); these are manifestly rephase-invariant. In the 

three-generation case, the question of how to parametrize the KM matrix 

is not too important. However if a generalization to a higher number of 

generations turns out to be necessary, the problem is less trivial. 
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If one does insist on a phase-dependent convention, we believe 

that choosing diagonal elements and those next-to diagonal elements 

which are above the diagonal to be real guarantees a simple relationship to 

plaquette phases. However one suffers from increasing complexity in the 

lower diagonal half. It may also be that experiment may dictate other 

choices; if a given set of IViol are measured especially accurately, it 

makes sense to include them in the set of independent parameters. 

Likewise one might consider to use phases of those plaques directly 

related to the observed CP violation. Our basic point is to highlight the 

importance of rephase-invariance of any future parametrization, because 

only then is the physics manifest and not obscured by arbitrary phase 

conventions. 
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